Telegram Group & Telegram Channel
Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение



tg-me.com/ds_interview_lib/196
Create:
Last Update:

Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/196

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека собеса по Data Science | вопросы с собеседований from no


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA